Publications F. Debart

Françoise Debart

83. A second type of N7-guanine RNA cap methyltransferase in an unusual locus of a large RNA virus genome
A. Shannon, B. Sama, P. Gauffre, T. Guez, F. Debart, J.-J. Vasseur, E. Decroly, B. Canard, F. Ferron
Nucleic Acid Research, 2022, 50, 11186–11198

82. Facile access to 4′-(N-acylsulfonamide) modified nucleosides and evaluation of their inhibitory activity against SARS-CoV-2 RNA cap N7-guanine-methyltransferase nsp14
R. Amador, A. Delpal, B. Canard, J.-J. Vasseur, E. Decroly, F. Debart, G. Clavé,* M. Smietana*
Organic Biomolecular Chemistry, 2022, 20, 7582-7586.

81. Direct Access to Unique C-5’-Acyl Modified Nucleosides through Liebeskind–Srogl Cross-Coupling Reaction.
Maverick, M. A.; Gaillard, M.; Vasseur, J.-J.; Debart, F.; Smietana, M.
Eur. J. Org. Chem. 2022,  (21), e202101061. https://doi.org/10.1002/ejoc.202101061.

80. Potent Inhibition of SARS-CoV-2 nsp14 N7-Methyltransferase by Sulfonamide-Based Bisubstrate Analogues.
Ahmed-Belkacem, R.; Hausdorff, M.; Delpal, A.; Sutto-Ortiz, P.; Colmant, A. M. G.; Touret, F.; Ogando, N. S.; Snijder, E. J.; Canard, B.; Coutard, B.; Vasseur, J.-J.; Decroly, E.; Debart, F.
J. Med. Chem. 2022, 65 (8), 6231-6249. https://doi.org/10.1021/acs.jmedchem.2c00120.

79. Bisubstrate Strategies to Target Methyltransferases.
Ahmed-Belkacem, R.; Debart, F.; Vasseur, J.-J.
Eur. J. Org. Chem. 2022, 22 (21), e202101481. https://doi.org/10.1002/ejoc.202101481.

78. First insights into the structural features of Ebola virus methyltransferase activities.
Valle, C.; Martin, B.; Ferron, F.; Roig-Zamboni, V.; Desmyter, A.; Debart, F.; Vasseur, J.-J.; Canard, B.; Coutard, B.; Decroly, E.
Nucleic Acids Res. 2021, 49 (3), 1737-1748. https://doi.org/10.1093/nar/gkaa1276.

77. The methyltransferase domain of the Respiratory Syncytial Virus L protein induces cap N7 and 2’O-methylation.
Sutto-Ortiz, P.; Tcherniuk, S.; Ysebaert, N.; Abeywickrema, P.; Noël, M.; Debart, F.; Vasseur, J.-J.; Canard, B.; Eleouët, J.-F.; Roymans, D.; Rigaux, P.; Decroly, E.
PLoS Path. 2021, 17 (5), e1009562. https://doi.org/10.1371/journal.ppat.1009562.

76. Protein-primed RNA synthesis in SARS-CoVs and structural basis for inhibition by AT-527.
Shannon, A.; Fattorini, V.; Sama, B.; Selisko, B.; Feracci, M.; Falcou, C.; Gauffre, P.; Kazzi, P. E.; Decroly, E.; Rabah, N.; Alvarez, K.; Eydoux, C.; Guillemot, J.-C.; Debart, F.; Vasseur, J.-J.; Noel, M.; Moussa, A.; Good, S.; Lin, K.; Sommadossi, J.-P.; Zhu, Y.; Yan, X.; Shi, H.; Ferron, F.; Canard, B.
bioRxiv 2021. https://doi.org/10.1101/2021.03.23.436564.

75. FTO-mediated cytoplasmic m6Am demethylation adjusts stem-like properties in colorectal cancer cell.
Relier, S.; Ripoll, J.; Guillorit, H.; Amalric, A.; Boissière, F.; Vialaret, J.; Attina, A.; Debart, F.; Choquet, A.; Macari, F.; Samalin, E.; Vasseur, J.-J.; Pannequin, J.; Crapez, E.; Hirtz, C.; Rivals, E.; Bastide, A.; David, A.
Nat. Commun. 2021, 12, 1716. https://doi.org/10.1038/s41467-021-21758-4

74. The C-terminal domain of the Sudan ebolavirus L protein is essential for RNA binding and methylation.
Valle, C.; Martin, B.; Debart, F.; Vasseur, J.-J.; Imbert, I.; Canard, B.; Coutard, B.; Decroly, E.,
J. Virol. 2020, 94 (12), e00520-20. https://doi.org/10.1128/jvi.00520-20.

73. FTO-mediated cytoplasmic m6Am demethylation adjusts stem-like properties in colorectal cancer cell.
Relier, S.; Ripoll, J.; Guillorit, H.; Amalric, A.; Boissière, F.; Vialaret, J.; Attina, A.; Debart, F.; Choquet, A.; Macari, F.; Samalin, E.; Vasseur, J.-J.; Pannequin, J.; Crapez, E.; Hirtz, C.; Rivals, E.; Bastide, A.; David, A.
bioRxiv 2020. https://doi.org/10.1101/2020.01.09.899724.

72. Conjugation of Doxorubicin to siRNA Through Disulfide-based Self-immolative Linkers.
Gauthier, F.; Bertrand, J.-R.; Vasseur, J.-J.; Dupouy, C.; Debart, F.
Molecules 2020, 25 (11), 2714. https://doi.org/10.3390/molecules25112714.

71. Synthesis of adenine dinucleosides SAM analogs as specific inhibitors of SARS-CoV nsp14 RNA cap guanine-N7-methyltransferase.
Ahmed-Belkacem, R.; Sutto-Ortiz, P.; Guiraud, M.; Canard, B.; Vasseur, J.-J.; Decroly, E.; Debart, F.
Eur. J. Med. Chem. 2020, 201, 112557. https://doi.org/10.1016/j.ejmech.2020.112557.

70. Combining chemical synthesis and enzymatic methylation to access short RNAs with various 5′ caps.
Muthmann, N.; Guez, T.; Vasseur, J.-J.; Jaffrey, S. R.; Debart, F.; Rentmeister, A.
ChemBioChem 2019, 20, doi:10.1002/cbic.201900037. https://doi.org/doi:10.1002/cbic.201900037.

69. FTO controls reversible m6Am RNA methylation during snRNA biogenesis.

Mauer, J.; Sindelar, M.; Despic, V.; Guez, T.; Hawley, B. R.; Vasseur, J.-J.; Rentmeister, A.; Gross, S. S.; Pellizzoni, L.; Debart, F.; Goodarzi, H.; Jaffrey, S. R.

Nature Chem. Biol. 2019, 340-347. https://doi.org/10.1038/s41589-019-0231-8.

68. Conjugation of small molecules to RNA using a reducible disulfide linker attached at 2’OH position via a carbamate function.

Gauthier, F.; Malher, A.; Vasseur, J. J.; Dupouy, C.; Debart, F.

Eur. J. Org. Chem. 2019, 5636-5645. https://doi.org/10.1002/ejoc.201900740.

67. Identification of the m6Am methyltransferase PCIF1 reveals the location and functions of m6Am in the transcriptome.

Boulias, K.; Toczydlowska-Socha, D.; Hawley, B. R.; Liberman-Isakov, N.; Takashima, K.; Zaccara, S.; Guez, T.; Vasseur, J.-J.; Debart, F.; Aravind, L.; Jaffrey, S. R.; Lieberman Greer, E.,

Mol. Cell 2019, 75 (3), 631-643.e8. https://doi.org/10.1016/j.molcel.2019.06.006.

66. Synthesis of adenine dinucleosides 2’,5’-bridged by sulfur-containing linkers as bisubstrate SAM analogues for viral RNA 2’-O-methyltransferases.

Ahmed-Belkacem, R.; Sutto-Ortiz, P.; Decroly, E.; Vasseur, J. J.; Debart, F.

Eur. J. Org. Chem. 2019, 6486-6495. https://doi.org/10.1002/ejoc.201901120.

65. La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region.

Philippe, L.; Vasseur, J.-J.; Debart, F.; Thoreen, C. C.

Nucleic Acids Res. 2018, 46 (3), 1457-1469. https://doi.org/10.1093/nar/gkx1237.

64. La protéine L du virus Ebola porte une nouvelle activité enzymatique impliquée dans la méthylation interne des ARN.

Martin, B.; Valle, C.; Coutard, B.; Canard, B.; Debart, F.; Decroly, E.

Medecine / sciences 2018, 34 (11), 919-921. https://doi.org/10.1051/medsci/2018230

63. The methyltransferase domain of the Sudan ebolavirus L protein specifically targets internal adenosines of RNA substrates, in addition to the cap structure.

Martin, B.; Coutard, B.; Guez, T.; Paesen, G. C.; Canard, B.; Debart, F.; Vasseur, J.-J.; Grimes, J. M.; Decroly, E.

Nucleic Acids Res. 2018, 46 (15), 7902-7912. https://doi.org/10.1093/nar/gky637.

62. Gymnotic delivery and gene silencing activity of reduction-responsive siRNAs bearing lipophilic disulfide-containing modifications at 2′-position.

Gauthier, F.; Claveau, S.; Bertrand, J.-R.; Vasseur, J.-J.; Dupouy, C.; Debart, F.

Bioorg. Med. Chem. 2018, 26 (16), 4635-4643. https://doi.org/10.1016/j.bmc.2018.07.033.

61. A 2′,2′-disulfide-bridged dinucleotide conformationally locks RNA hairpins.

Gauthier, F.; Beltran, F.; Biscans, A.; Debart, F.; Dupouy, C.; Vasseur, J.-J.

Org. Biomol. Chem. 2018, 16 (17), 3181-3188. https://doi.org/10.1039/C8OB00328A.

60. Stimuli-responsive oligonucleotides in prodrug-based approaches for gene silencing.

Debart, F.; Dupouy, C.; Vasseur, J. J.

Beilstein J. Org. Chem. 2018, 14, 436-469. https://doi.org/doi:10.3762/bjoc.14.32.

59. Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress.

Tamarkin-Ben-Harush, A.; Vasseur, J. J.; Debart, F.; Ulitsky, I.; Dikstein, R.

eLife 2017, 6, e21907. https://doi.org/10.7554/eLife.21907.

58. Reversible methylation of m(6)A(m) in the 5 ‘ cap controls mRNA stability.

Mauer, J.; Luo, X. B.; Blanjoie, A.; Jiao, X. F.; Grozhik, A. V.; Patil, D. P.; Linder, B.; Pickering, B. F.; Vasseur, J. J.; Chen, Q. Y.; Gross, S. S.; Elemento, O.; Debart, F.; Kiledjian, M.; Jaffrey, S. R.

Nature 2017, 541 (7637), 371-375. https://doi.org/10.1038/nature21022.

57. Zika Virus Methyltransferase: Structure and Functions for Drug Design Perspectives.

Coutard, B.; Barral, K.; Lichiere, J.; Selisko, B.; Martin, B.; Aouadi, W.; Lombardia, M. O.; Debart, F.; Vasseur, J. J.; Guillemot, J. C.; Canard, B.; Decroly, E.

J. Virol. 2017, 91 (5), e02202-16. https://doi.org/10.1128/jvi.02202-16.

56. Toward the identification of viral cap-methyltransferase inhibitors by fluorescence screening assay.

Aouadi, W.; Eydoux, C.; Coutard, B.; Martin, B.; Debart, F.; Vasseur, J. J.; Contreras, J. M.; Morice, C.; Quérat, G.; Jung, M.-L.; Canard, B.; Guillemot, J.-C.; Decroly, E.

Antiviral. Res. 2017, 144 (Supplement C), 330-339. https://doi.org/10.1016/j.antiviral.2017.06.021.

55. Binding of the Methyl Donor S-Adenosyl-L-Methionine to Middle East Respiratory Syndrome Coronavirus 2 ‘-O-Methyltransferase nsp16 Promotes Recruitment of the Allosteric Activator nsp10.

Aouadi, W.; Blanjoie, A.; Vasseur, J. J.; Debart, F.; Canard, B.; Decroly, E.

J. Virol. 2017, 91 (5 ), e02217-16. https://doi.org/10.1128/jvi.02217-16.

54. A versatile post-synthetic method on a solid support for the synthesis of RNA containing reduction-responsive modifications.

Biscans, A.; Rouanet, S.; Vasseur, J. J.; Dupouy, C.; Debart, F.

Org. Biomol. Chem. 2016, 14, 7010-7017. https://doi.org/10.1039/c6ob01272h.

53. Lipophilic 2′-O-Acetal Ester RNAs: Synthesis, Thermal Duplex Stability, Nuclease Resistance, Cellular Uptake, and siRNA Activity after Spontaneous Naked Delivery.

Biscans, A.; Bertrand, J.-R.; Dubois, J.; Rüger, J.; Vasseur, J.-J.; Sczakiel, G.; Dupouy, C.; Debart, F.

ChemBioChem 2016, 17, 2054-2062. https://doi.org/10.1002/cbic.201600317.

52. Solid-Phase Synthesis of Oligonucleotide 5′-(α-P-Thio)triphosphates and 5′-(α-P-Thio)(β,γ-methylene)triphosphates.

Thillier, Y.; Sallamand, C.; Baraguey, C.; Vasseur, J.-J.; Debart, F.

 Eur. J. Org. Chem. 2015, 302-308. https://doi.org/10.1002/ejoc.201403381.

51. mRNA maturation in giant viruses: variation on a theme.

Priet, S.; Lartigue, A.; Debart, F.; Claverie, J.-M.; Abergel, C.

Nucleic Acids Res. 2015, 43 (7), 3776-3788. https://doi.org/10.1093/nar/gkv224.

50. X-ray structure and activities of an essential Mononegavirales L-protein domain.

Paesen, G. C.; Collet, A.; Sallamand, C.; Debart, F.; Vasseur, J.-J.; Canard, B.; Decroly, E.; Grimes, J. M.

Nature comm. 2015, 6, 8749. https://doi.org/10.1038/ncomms9749.

49. mRNA capping by venezuelan equine encephalitis virus nsP1: functional characterization and implications for antiviral research.

Changqing, L.; Guillén, J.; Rabah, N.; Blanjoie, A.; Debart, F.; Vasseur, J. J.; Canard, B.; Decroly, E.; Coutard, B.

J. Virol. 2015, 89 (16), 8292-8303. https://doi.org/10.1128/JVI.00599-15.

48. Synthesis, binding, nuclease resistance and cellular uptake properties of 2′-O-acetalester-modified oligonucleotides containing cationic groups.

Biscans, A.; Rouanet, S.; Bertrand, J.-R.; Vasseur, J. J.; Dupouy, C.; Debart, F.

Bioorg. Med. Chem. 2015, 23, 5360-5368. https://doi.org/10.1016/j.bmc.2015.07.054.

47. Ecological catalysis and phytoextraction: Symbiosis for future.

Escande, V.; Garoux, L.; Grison, C.; Thillier, Y.; Debart, F.; Vasseur, J.-J.; Boulanger, C.; Grison, C.

Appl. Catal., B 2014, 146, 279-288. http://dx.doi.org/10.1016/j.apcatb.2013.04.011.

46. Direct Synthesis of Partially Modified 2′-O-Pivaloyloxymethyl RNAs by a Base-Labile Protecting Group Strategy and their Potential for Prodrug-Based Gene-Silencing Applications.

Biscans, A.; Bos, M.; Martin, A. R.; Ader, N.; Sczakiel, G.; Vasseur, J.-J.; Dupouy, C.; Debart, F.

ChemBioChem 2014, 15, 2674-2679. https://doi.org/10.1002/cbic.201402382.

45. Solid-phase synthesis of 5′-triphosphate 2′-5′-oligoadenylates analogs with a 3′-O-biolabile group and their evaluation as RNase L activators and antiviral drugs.

Thillier, Y.; Stevens, S. K.; Moy, C.; Taylor, J.; Vasseur, J.-J.; Beigelman, L.; Debart, F.

Bioorg. Med. Chem. 2013, 21, 5461-5469. https://doi.org/10.1016/j.bmc.2013.06.008.

44. Metallophyte wastes and polymetallic catalysis: a promising combination in green chemistry. The illustrative synthesis of 5′-capped RNA.

Thillier, Y.; Losfeld, G.; Escande, V.; Dupouy, C.; Vasseur, J.-J.; Debart, F.; Grison, C.

RSC Adv. 2013, 3, 5204-5212. https://doi.org/10.1039/C3RA23115A.

43. The B. subtilis RNA deprotection enzyme RppH recognizes guanosine in the second position of its substrates.

Piton, J.; Larue, V.; Thillier, Y.; Dorléans, A.; Pellegrini, O.; Sierra-Gallay, I. L. d. l.; Vasseur, J.-J.; Debart, F.; Tisné, C.; Condon, C.

Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (22), 8858-8863. https://doi.org/10.1073/pnas.1221510110.

42. Development of specific Dengue virus 2’-O- and N7-methyltransferase assays for antiviral drug screening.

Barral, K.; Sallamand, C.; Petzold, C.; Coutard, B.; Collet, A.; Thillier, Y.; Zimmermann, J.; Vasseur, J.-J.; Canard, B.; Rohayem, J.; Debart, F.; Decroly, E.

Antiviral. Res. 2013, 99, 292-300. https://doi.org/10.1016/j.antiviral.2013.06.001.

41. The biolabile 2′-O-pivaloyloxymethyl modification in an RNA helix: an NMR solution structure.

Baraguey, C.; Lescrinier, E.; Lavergne, T.; Debart, F.; Herdewijn, P.; Vasseur, J.-J.

Org. Biomol. Chem. 2013, 11, 2638-2647. https://doi.org/10.1039/C3OB27005J.

40. Synthesis of 5′-Cap-0 and Cap-1 RNAs using solid-phase chemistry coupled with enzymatic methylation by human (guanine-N7)-methyltransferase.

Thillier, Y.; Decroly, E.; Morvan, F.; Canard, B.; Vasseur, J.-J.; Debart, F.

RNA 2012, 18, 856-868. https://doi.org/10.1261/rna.030932.111.

39. Molecular basis for nucleotide conservation at the ends of the dengue virus genome.

Selisko, B.; Potisopon, S.; Agred, R.; Priet, S.; Varlet, I.; Thillier, Y.; Sallamand, C.; Debart, F.; Vasseur, J.-J.; Canard, B.

PLoS Path. 2012, 8 (9), e1002912. https://doi.org/10.1371/journal.ppat.1002912.

38. Synthesis and preliminary evaluation of pro-RNA 2′-O-masked with biolabile pivaloyloxymethyl groups in an RNA interference assay.

Lavergne, T.; Baraguey, C.; Dupouy, C.; Parey, N.; Wuensche, W.; Sczakiel, G.; Vasseur, J.-J.; Debart, F.

J. Org. Chem. 2011, 76, 5719-5731. https://doi.org/10.1021/jo200826h.

37. Efficient Chemical Solid-Phase Synthesis of 5′-Triphosphates of DNA, RNA, and their Analogs.

Zlatev, I.; Lavergne, T.; Debart, F.; Vasseur, J.-J.; Manoharan, M.; Morvan, F.

Org. Lett. 2010, 12 (10), 2190-2193. https://doi.org/10.1021/ol1004214.

36. From Anionic to Cationic Alpha Anomeric Oligodeoxynucleodides.

Morvan, F.; Debart, F.; Vasseur, J.-J.

Chemistry & Biodiversity 2010, 7 (3), 494-535. https://doi.org/10.1002/cbdv.200900220.

35. Chemical synthesis of RNA with base-labile 2′-O-(pivaloyloxymethyl)-protected ribonucleoside phosphoramidites.

Debart, F.; Lavergne, T.; Janin, M.; Dupouy, C.; Vasseur, J.-J.

Current Protocols in Nucleic Acid Chemistry, Beaucage, S. e. a., Ed. John Wiley & Sons, Inc.: USA, 2010; Vol. 43, pp 3.19.11-13.19.27. https://doi.org/10.1002/0471142700.nc0319s43.

34. Assessment of new 2′-O-acetalester protecting groups for regular RNA synthesis and original 2′-modified proRNA.

Martin, A. R.; Lavergne, T.; Vasseur, J.-J.; Debart, F.

Bioorg. Med. Chem. Lett. 2009, 19, 4046-4049. https://doi.org/10.1016/j.bmcl.2009.06.015

33. Efficient release of base-sensitive oligonucleotides from solid supports using fluoride ions.

Lavergne, T.; Parey, N.; Vasseur, J.-J.; Debart, F.

Eur. J. Org. Chem. 2009, 2190-2194. https://doi.org/10.1002/ejoc.200801275.

32. A base-labile group for 2′-OH protection of ribonucleosides: a major challenge for RNA synthesis.

Lavergne, T.; Bertrand, J.-R.; Vasseur, J.-J.; Debart, F.

Chem. Eur. J. 2008, 14, 9135-9138. https://doi.org/10.1002/chem.200801392.

31. 5-propynylamino a-deoxyuridine promotes DNA duplex stabilization of anionic and neutral but not cationic a-oligonucleotides.

Deglane, G.; Morvan, F.; Debart, F.; Vasseur, J.-J.

Bioorg. Med. Chem. Lett. 2007, 17, 951-954.

30. Chemical Modifications to Improve the Cellular Uptake of Oligonucleotides.

Debart, F.; Abes, S.; Deglane, G.; Moulton, H. M.; Clair, P.; Gait, M. J.; Vasseur, J.-J.; Lebleu, B.

Curr. Top. Med. Chem. 2007, 7, 727-737.

29. First evaluation of acyloxymethyl or acylthiomethyl groups as biolabile 2′-O-protections of RNA.

Parey, N.; Baraguey, C.; Vasseur, J.-J.; Debart, F.

Org. Lett. 2006, 8 (17), 3869-3872. https://doi.org/10.1021/ja00036a076.

28. Effect of DNA modifications on DNA processing by HIV-1 integrase and inhibitor binding: role of DNA backbone flexibility and an open catalytic site.

Johnson, A. A.; Sayer, J. M.; Yagi, H.; Patil, S. S.; Debart, F.; Maier, M. A.; Corey, D. R.; Vasseur, J.-J.; Burke, J., T. R.; Marquez, V. E.; Jerina, D. m.; Pommier, Y.

J. Biol. Chem. 2006, 281 (43), 32428-32438.

27. Impact of the guanidinium group on hybridisation and cellular uptake of cationic oligonucleotides.

Deglane, G.; Abes, Y.; Michel, T.; Prévot, P.; Vivès, E.; Debart, F.; Lebleu, B.; Vasseur, J.-J.

ChemBioChem 2006, 7 (4), 684-692.

26. Highly stable DNA triplex formed with cationic phosphoramidate pyrimidine a-oligonucleotides.

Michel, T.; Debart, F.; Heitz, F.; Vasseur, J.-J.,

 ChemBioChem 2005, 6, 1254-1262.

25. Towards high yield synthesis of peptide-oligonucleotide chimera through a disulfide bridge: a simplified method for oligonucleotide activation.

Maurel, F.; Debart, F.; Cavelier, F.; Thierry, A. R.; Lebleu, B.; Vasseur, J.-J.; Vivès, E.

Bioorg. Med. Chem. Lett. 2005, 15, 5084-5087.

24. Cationic phosphoramidate a-oligonucleotides efficiently target single-stranded DNA and RNA and inhibit hepatitis C virus IRES-mediated translation.

Michel, T.; Martinand-Mari, C.; Debart, F.; Lebleu, B.; Robbins, I.; Vasseur, J.-J.

Nucleic Acids Res. 2003, 31 (18), 5282-5290.

23. FTIR and UV spectroscopy studies of triplex formation between a-oligonucleotides with non-ionic phosphoramidate linkages and DNA targets.

Michel, T.; Debart, F.; Vasseur, J.-J.; Geinguenaud, F.; Taillandier, E.

J. Biomol. Struct. Dyn. 2003, 21 (3), 435-445.

22. Efficient Guanidination of the phosphate linkage towards cationic phosphoramidate oligonucleotides.

Michel, T.; Debart, F.; Vasseur, J.-J.

Tetrahedron Lett. 2003, 44 (35), 6579-6582.

21. FTIR and UV spectroscopy studies of triplex formation between pyrimidine methoxyethylphosphoramidates a-oligodeoxynucleotides and ds DNA targets.

Sun, B.-W.; Geinguenaud, F.; Taillandier, E.; Naval, M.; Laurent, A.; Debart, F.; Vasseur, J.-J.

J. Biomol. Struct. Dyn. 2002, 19 (6), 1073-1081.

20. 2-amino-a-2′-deoxyadenosine increased duplex stability of methoxyethylphosphoramidate a-oligodeoxynucleotides with RNA target.

Naval, M.; Michel, T.; Vasseur, J.-J.; Debart, F.

Bioorg. Med. Chem. Lett. 2002, 12, 1435-1438.

19. Use of MALDI-TOF mass spectrometry to monitor solid-phase synthesis of oligonucleotides.

Guerlavais, T.; Meyer, A.; Debart, F.; Imbach, J.-L.; Morvan, F.; Vasseur, J.-J.

Anal. Bioanal. Chem. 2002, 374, 57-63.

18. Chiral and steric effects in the efficient binding of [alpha]-anomeric deoxyoligonucleoside N-alkylphosphoramidates to ssDNA and RNA.

Laurent, A.; Naval, M.; Debart, F.; Vasseur, J.-J.; Rayner, B.

Nucleic Acids Res. 1999, 27 (21), 4151-4159.

17. Anomeric inversion (from b to a) in methylphosphonate oligonucleosides enhances their affinity for DNA and RNA.

Debart, F.; Meyer, A.; Vasseur, J.-J.; Rayner, B.,

Nucleic Acids Res. 1998, 26, 4551-4556.

16. A new route to oligodeoxynucleoside phosphoramidates (P-NH2).

Laurent, A.; Debart, F.; Rayner, B.

Tetrahedron Lett. 1997, 38, 5285-5288.

15. Esterase-triggered fluorescence of fluorogenic oligonucleotides.

Laurent, A.; Debart, F.; Lamb, N.; Rayner, B.

Bioconjugate Chem. 1997, 8, 856-861.

14. Chimeric alpha-beta oligonucleotides as antisense inhibitors of reverse transcription.

Boizeau, C.; Debart, F.; Rayner, B.; Imbach, J.-L.; Toulme, J.-J.

FEBS Lett. 1995, 361, 41-45.

13. Efficient and stereoselective synthesis of 3′-deoxy 3′-C-branched-chain substituted thymidine.

Sanghvi, Y.; Bharadwaj, R.; Debart, F.; De Mesmaeker, A.

Synthesis 1994, 11, 1163-1166.

12. Optimization of hybridizing abilities and nuclease resistance in the design of chimeric a-anomeric oligodeoxynucleotides containing b-anomeric gaps.

Debart, F.; Tosquellas, G.; Rayner, B.; Imbach, J.-L.

Bioorg. Med. Chem. Lett. 1994, 4, 1041-1046.

11. Oligonucleosides: synthesis of a novel methylhydroxylamine linked nucleoside dimer and its incorporation into antisense sequences.

Vasseur, J.-J.; Debart, F.; Sanghvi, Y.; Cook, P. D.

J. Am. Chem. Soc. 1992, 114, 4006-4007. https://doi.org/10.1021/ja00036a076.

10. Intermolecular radical C-C bond formation: synthesis of a novel dinucleoside linker for non-anionic antisense oligonucleosides.

Debart, F.; Vasseur, J.-J.; Sanghvi, Y.; Cook, P. D.

Tetrahedron Lett. 1992, 33, 2645-2648.

9. Synthesis and incorporation of methylenoxy(methylimino) linked thymidine dimer into antisense oligonucleosides.

Debart, F.; Vasseur, J.-J.; Sanghvi, Y.; Cook, P. D.,

Bioorg. Med. Chem. Lett. 1992, 2, 1479-1482.

8. Synthesis and base-pairing properties of the nuclease-resistant a-anomeric dodecaribonucleotide a-[r(UCUUAACCCACA)].

Debart, F.; Rayner, B.; Degols, G.; Imbach, J.-L.

Nucleic Acids Res. 1992, 20, 1193-1200. https://doi.org/10.1093/nar/20.6.1193.

7. Synthesis, DNA binding properties and biological evaluation of novel oligo-meta-benzamides related to Netropsin.

Debart, F.; Gosselin, G.; Rayner, B.; Le Ber, P.; Auclair, C.; Balzarini, J.; De Clercq, E.; Paoletti, C.; Imbach, J.-L.

Eur. J. Med. Chem. 1991, 26, 261-271.

6. Caractérisation de nouveaux dérivés de la Nétropsine et identification de leurs intermédiaires de synthèse par spectrométrie de masse FAB.

Aubagnac, J.-L.; Debart, F.; Mrani, D.; Gosselin, G.; Rayner, B.; Imbach, J.-L.

J. Heterocycl. Chem. 1991, 28, 145-151.

5. Sugar modified oligonucleotides: II. Solid phase synthesis of nuclease resistant a-anomeric uridylates as potential antisense agents.

Debart, F.; Rayner, B.; Imbach, J.-L.

Tetrahedron Lett. 1990, 31, 3537-3540.

4. Synthesis, DNA binding and biological evaluation of synthetic precursors and novel analogues of Netropsin.

Debart, F.; Périgaud, C.; Gosselin, G.; Mrani, D.; Rayner, B.; Le Ber, P.; Auclair, C.; Balzarini, J.; De Clercq, E.; Paoletti, C.; Imbach, J.-L.

J. Med. Chem. 1989, 32, 1075-1083.

3. Structure and conformation of the duplex consensus 5′-splice site d[(CpApApGpTpApApGpT) . (ApCpTpTpApCpCpTpG)] deduced from high field 1H-NMR of the non-exchangeable and imino protons.

Debart, F.; Rayner, B.; Imbach, J.-L.; Lee, M.; Chang, D.-K.; Pon, R. T.; Lown, J. W.

J. Biomol. Struct. Dyn. 1987, 5, 47-65.

2. 1H and 31P-NMR assignments of the non-exchangeable protons of the consensus acceptor exon : intron junction d(CpTpApCpApGpGpT).

Lown, J. W.; Chang, D.-K.; Debart, F.; Rayner, B.; Imbach, J.-L.

J. Biomol. Struct. Dyn. 1986, 3, 1171-1187.

1. Structure and conformation of the duplex consensus acceptor exon : intron junction d[(CpTpApCpApGpGpT) . (ApCpCpTpGpTpApG)] deduced from high field 1H-NMR of non-exchangeable and imino protons.

Debart, F.; Rayner, B.; Imbach, J.-L.; Chang, D.-K.; Lown, J. W.

J. Biomol. Struct. Dyn. 1986, 4, 343-363.

search previous next tag category expand menu location phone mail time cart zoom edit close